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Abstract

Current light field (LF) cameras provide low spatial res-
olution and limited depth-of-field (DOF) control when com-
pared to traditional digital SLR (DSLR) cameras. We show
that a hybrid imaging system consisting of a standard LF
camera and a high-resolution standard camera enables (a)
achieve high-resolution digital refocusing, (b) better DOF
control than LF cameras, and (c) render graceful high-
resolution viewpoint variations, all of which were previ-
ously unachievable. We propose a simple patch-based al-
gorithm to super-resolve the low-resolution views of the
light field using the high-resolution patches captured using
a high-resolution SLR camera. The algorithm does not re-
quire the LF camera and the DSLR to be co-located or for
any calibration information regarding the two imaging sys-
tems. We build an example prototype using a Lytro cam-
era (380× 380 pixel spatial resolution) and a 18 megapixel
(MP) Canon DSLR camera to generate a light field with 11

MP resolution (9× super-resolution) and about 1
9

th
of the

DOF of the Lytro camera. We show several experimental
results on challenging scenes containing occlusions, specu-
larities and complex non-lambertian materials, demonstrat-
ing the effectiveness of our approach.

1. Introduction
Light field (LF) is a 4-D function that measures the spa-

tial and angular variations in the intensity of light [2]. Ac-
quiring light fields provides us with three important capa-
bilities that a traditional camera does not allow: (1) ren-
der images with small viewpoint changes, (2) render im-
ages with post-capture control of focus and depth-of-field,
and (3) compute a depth map or a range image by utilizing
either multi-view stereo or depth from focus/defocus meth-
ods. The growing popularity of LF cameras is attributed
to these three novel capabilities. Nevertheless, current LF
cameras suffer from two significant limitations that hamper
their widespread appeal and adoption: (1) low spatial reso-
lution and (2) limited DOF control.

Spatial Resolution 

A
n

gu
la

r 
R

es
o

lu
ti

o
n

 

DSLR 
camera 

Lytro 
camera 

Fundamental 
resolution trade-off 

Hybrid Imager 
(our system) 

11 megapixels 
9 X 9 angular 
resolution. 

0.1 megapixels 
9 X 9 angular 
resolution. 

11 megapixels 
no angular 

information. 

Figure 1: Fundamental resolution trade-off in light-field imaging:
Given a fixed resolution sensor there is an inverse relationship be-
tween spatial resolution and angular resolution that can be cap-
tured. By using a hybrid imaging system containing two sensors,
one a high spatial resolution camera and another a light-field cam-
era, one can reconstruct a high resolution light field.

1.1. Motivation
Fundamental Resolution Trade-off: Given an image

sensor of a fixed resolution, existing methods for captur-
ing light-field trade-off spatial resolution in order to acquire
angular resolution (with the exception of the recently pro-
posed mask-based method [26]). Consider an example of a
11 MP image sensor, much like the one used in the Lytro
camera [24]. A traditional camera using such a sensor is
capable of recording 11 MP images, but acquires no an-
gular information and therefore provides no ability to per-
form post-capture refocusing. In contrast, the Lytro camera
is capable of recording 9 × 9 angular resolution, but has
a low spatial resolution of 380 × 380 pixels (since it con-
tains a 9 × 9 pixels per lens array). This resolution loss is
not restricted to microlens array-based LF cameras but is a
common handicap faced by other LF cameras including tra-
ditional mask-based LF cameras [37], camera arrays [31],
and angle-sensitive pixels [38]. Thus, there is an imminent
need for improving the spatial resolution characteristics of
LF sensors. We propose using a hybrid imaging system con-
taining two cameras, one with a high spatial resolution sen-
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Figure 2: Traditional cameras capture high resolution photographs but provide no post-capture focusing controls. Common light field
cameras provide depth maps and post-capture refocusing ability but at very low spatial resolution. Here, we show that a hybrid imaging
system comprising of a high-resolution camera and a light-field camera allows us to obtain high-resolution depth maps and post-capture
refocusing.

sor and the second being a light-field camera, which can be
used to reconstruct a high resolution light field (see Figure
1).

Depth Map Resolution: LF cameras enable to compu-
tation of depth information by the application of multi-view
stereo or depth from focus/defocus methods on the rendered
views. Unfortunately, the low spatial resolution of the ren-
dered views result in low resolution depth maps. In addi-
tion, since the depth resolution of the depth maps (i.e., the
number of distinct depth profiles within a fixed imaging vol-
ume) is directly proportional to the disparity between views,
the low resolution of the views directly result in very few
depth layers in the recovered range map. This results in er-
rors when the depth information is directly used for vision
tasks such as segmentation and object/activity recognition.

DOF Control: The DOF of an imaging system is in-
versely proportional to the image resolution (for a fixed f#
and sensor size). Since the rendered views in a LF cam-
era are low-resolution, this results in much larger DOF than
can be attained using high resolution DSLR cameras with
similar sensor size and f#. This is a primary reason why
DSLR cameras provide shallower DOF and are favored for
photography.

There is a need for a high resolution shallow DOF LF
imaging device.

1.2. Contributions
In this paper, we propose a hybrid imaging system con-

sisting of a high resolution standard camera along with the
low-resolution LF camera. This hybrid imaging system
(Figure 2) along with the associated algorithms enables us

to capture/render (a) high spatial resolution light field, (b)
high spatial resolution depth maps, (c) higher depth resolu-
tion (more depth layers), and (d) shallower DOF.

2. Related Work
LF capture: Existing LF cameras can be divided into

two main categories: (a) single shot [29, 18, 37, 24, 32, 17,
31, 38], and (b) multiple shot [22, 4]. Single shot light field
cameras multiplex the 4-D LF onto the 2D sensor, losing
spatial resolution to capture the angular information in the
LF. Such cameras employ either a lenslet array close to the
sensor [29, 17], a mask close to the sensor [37], angle sen-
sitive pixels [38] or an array of lens/prism outside the main
lens [18]. An example of multiple shot LF capture is pro-
grammable aperture imaging [22], which allows capturing
light fields at the spatial resolution of the sensor. Recently,
Babacan et al. [4], Marwah et al. [26] and Tambe et al. [35]
show that one can use compressive sensing and dictionary
learning to reduce the number of images required. The rein-
terpretable imager by Agrawal et al. [3] has shown resolu-
tion trade-offs in a single image capture. Another approach
for capturing LF is to use a camera array [20, 21, 40]. How-
ever, such approaches are hardware intensive, costly and re-
quire extensive bandwidth, storage and power consumption.

LF Super-resolution and Plenoptic2.0: The
Plenoptic2.0 camera [17] recovers the lost resolution
by placing the microlens array at a different location
compared to the original design [29]. Similarly, the
Raytrix camera [32] uses a microlens array with lenses
of different focal length to improve spatial resolution.



Recently, several LF super-resolution algorithms have
been proposed to recover the lost resolution [7, 39, 27].
Apart from these hardware modifications to the plenoptic
camera, super-resolution algorithms in context of LF have
also been proposed. Bishop et al. [7] proposed a Bayesian
framework in which they assume Lambertian textural
priors in the image formation model and estimate both the
high resolution depth map and light field. Wanner et al.
[39] propose to compute continuous disparity maps using
the epipolar plane image (EPI) structure of the LF. They
then use this disparity map and variational techniques to
compute super-resolved novel views. Mitra et al. [27] learn
Gaussian mixture model (GMM) for light field patches and
perform Bayesian inference to obtain super-resolved LF.
Most of these methods show modest super-resolution by
a factor of 4×. Here, we exploit the presence of a high
resolution camera to obtain significantly higher resolution
light-fields.

Hybrid Imaging: The idea of hybrid imaging was pro-
posed by Sawhney et al. [33], where a stereo setup of a low-
resolution (LR) camera and a high-resolution (HR) camera
was used to produce high-resolution stereoscopic images.
Following this, several examples of hybrid imaging have
found utility in different applications. As an application in
deblurring, Ben-Ezra et al. [6] proposed a hybrid imaging
system, where a LR high speed video camera co-located
with a HR still camera was used to deblur the blurred im-
ages. Related to hyper-spectral imaging, Kawakami et al.
[19] have proposed a hybrid imaging system consisting of
co-located HR RBG camera and LR hyper-spectral camera
to produce HR hyper-spectral data. Cao et al. [9] used a
co-located RBG video camera and LR multi-spectral cam-
era to produce HR multispectral video. Another example
of hybrid imaging system is the virtual view synthesis sys-
tem proposed by Tola et al. [36], where four regular video
cameras and a time-of-flight sensor is used. They show that
by adding the time-of-flight camera they could render bet-
ter quality virtual views than just using camera array with
similar sparsity.

Recently, Lu et al. [23] proposed a LF hybrid imaging
system, using a HR CCD camera co-located with a Shack-
Hartmann sensor [30] to improve the resolution of 3D im-
ages from a microscope. However, the CCD camera has a
small DOF setting and hence the super-resolved refocused
images degrade away from focal plane of the CCD cam-
era. Most of the above-mentioned hybrid imaging systems
require that the different sensors be co-located in order for
the algorithms to be able to effectively super-resolve image
information. Motivated by the recent success of patch based
matching algorithms, we propose a patch based strategy for
super-resolution absolving the need for co-location provid-
ing significant ease of practical realization.

Patch Matching-based Algorithms: Patch matching-
based techniques have been used in a variety of applica-

tions including texture synthesis [14], image completion
[34], denoising [8], deblurring [12], image super-resolution
[15, 16]. The patch based image super-resolution either per-
formed matching in a database of images [16] or exploited
the self-similarity within the input image [15]. In our hy-
brid imaging method, patches from each view of a LF is
matched with a reference high resolution image the same
scene. Since the high resolution image has the exact de-
tails of the scene, the super-resolved LF has the true infor-
mation compared to hallucinated information by [16, 15].
Recently, a couple of fast approximate nearest patch search
algorithms have been introduced [5]. We use the fast library
for approximate nearest neighbors (FLANN) [28] to search
for matching patches in the reference high-resolution im-
age.

3. Hybrid Light Field Imaging
The hybrid imager we propose is a combination of two

imaging systems: a low resolution LF device (Lytro cam-
era) and a high-resolution camera (DSLR). The Lytro cam-
era captures the angular perspective views and the depth of
the scene while the DSLR camera captures a photograph of
the scene. Our algorithm combines these two imaging sys-
tems to produce a light field with the spatial resolution of
the DSLR and the angular resolution of the Lytro.

3.1. Hybrid Super-resolution Algorithm
Motivated by the recent success and adoption of patch-

based algorithms for image super-resolution, we adapt ex-
isting patch-based super-resolution algorithm for our hybrid
LF reconstruction. Traditional patch-based super-resolution
algorithms replace low-resolution patches from the test im-
age with high-resolution patches from from a large database
of natural images [16]. These super-resolution techniques
work reliably up to a factor of about 4; artifacts become
noticeable in the reconstructed image when used for larger
upsampling problems. In our example, the loss in spatial
resolution due to light-field capture is significantly larger
(9× in the case of the Lytro camera), beyond the scope of
these techniques. Our hybrid imaging system contains a sin-
gle high-resolution detailed texture of the same scene (albeit
from a slightly different viewpoint) which we will show sig-
nificantly improves our ability to perform super-resolution
with large upsampling factors.

Overview: Consider the process of super-resolving a LF
by a factor of N . Using our setup, the DSLR captures
an image that has a spatial resolution N times that of the
LF camera. From the high-resolution image, we extract
patches {href,i}ni=1 and store them in dictionary Dh, where
n is the total number of patches in the HR image. Low-
resolution features {fref,i}ni=1 are computed from each of
the HR patches by down-sampling by a factor of N and
then computing first- and second-order gradients. The low-
resolution features are stored in dictionary Df .



For super-resolving the low-resolution LF, we super-
resolve each view separately using the reference dictionary
pair Dh/Df . For each patch lj in a given view of the low-
resolution LF, gradient feature fj is calculated. Following
from [42], the 9 nearest neighbors in dictionary Df with
the smallest L2 distance from fj are computed; these 9

nearest neighbors are denoted as {f jref,k}9k=1. Let the high-
resolution patches in Dh, corresponding to the 9 nearest
neighbors in Df , be denoted as {hjref,k}9k=1. The estimated
high-resolution patch ĥj corresponding to lj is estimated
by:

ĥj =

∑9
k=1 wkh

j
ref,k∑9

k=1 wk

, where wk = exp
−||fj − f jref,k||2

2σ2

(1)
The reconstruction weights are motivated from [42]. In
practice, we extract an overlapping set of low-resolution
patches with a 1-pixel shift between adjacent patches and
reconstruct the high-resolution intensity at a pixel as the av-
erage of the recovered intensities for that pixel.

We use the Stanford light-field database [1], to cross val-
idate and estimate the value of σ2 that minimizes the pre-
diction error and use that value in all of our experiments.

Feature selection: Gradient information can be incor-
porated into patch matching algorithms to improve accu-
racy when searching for similar patches. Chang et al. [10]
use first- and second-order derivatives as features to facili-
tate matching. We also use first- and second-order gradients
as the feature which is extracted from the low-resolution
patches. The four 1-D gradient filters used to extract the
features are:

g1 =[−1, 0, 1], g2 = g1
T (2)

g3 =[1, 0,−2, 0, 1], g4 = g3
T (3)

where the superscript “T” denotes transpose. For a low-
resolution patch l, filters {g1, g2, g3, g4} are applied and
feature fl is represented as concatenation of the vectorized
filter outputs.

3.2. Performance Analysis
To characterize the performance of image restoration

algorithms, Zontak et al. [42] have proposed two mea-
sures: 1) prediction error and 2) prediction uncertainty.
We use these performance metrics to compare our LF
super-resolution approach against the super-resolution ap-
proaches based on external image statistics [16]. All
these approaches are instances of “Example-based super-
resolution” [16], where we use a dataset of high-res/low-res
patch pairs (hi, li), i = 1, 2, ..., n to super-resolve a given
image. We extract patches from the given image, and match
them to low resolution patches and then replace them with
corresponding high resolution patches to obtain the super-
resolved image. In this paper, we are going to match low

resolution features (Mentioned in Section 3) instead of low
resolution patches.

In our super-resolution approach, we create the HR-LR
patch pairs database using the reference HR image. In the
external image statistics method, we obtain the patch pairs
from the Berkley segmentation dataset (BSD) [25], as was
done in [42]. For testing, we use the light-field data from the
Stanford light-field dataset [1]. While [42] analyze the pre-
diction error and uncertainty for 2× image super-resolution,
we do so for a 4× light-field super-resolution problem since
the upsampling factors for LF capture are typically larger.

Given a LR patch lj of size 8 × 8, we compute its 9

nearest neighbors {ljk}9k=1 and corresponding HR patches
{hjk}9k=1 with respect to the HR-LR databases for the two
approaches. The HR patches are of size 32 × 32. The re-
constructed HR patch, ĥj , is then given by Equation 1.

We choose the parameter σ2 in the weight-term by cross-
validation. As in [42], the prediction error is defined as
||hGroundTruth− ĥj ||22 and the prediction uncertainty is the
weighted variance of the predictors {hjk}9k=1. The predic-
tion error and prediction uncertainty were averaged over all
the views of the input light-field. And this was done for nine
different light-field datasets and averaged.

Since the Stanford light field database contains 17 × 17
views, we are able to analyze the reconstruction perfor-
mance of a 5 × 5 light-field with (a) co-located reference
camera, (b) a reference camera with medium baseline and
(c) another with a large baseline. Figure 3 (Left) shows the
prediction error for both approaches under varying operat-
ing conditions. The image pixel intensities are in the range
0 to 255. This result shows that our approach has a lower
prediction error even when the reference image is separated
from the LF camera by a wide baseline. Figure 3 (Right)
shows the prediction uncertainty, when finding the nearest
neighbors. This plots shows the reliability measure of the
prediction. High uncertainties (entropy) among all the HR
candidates {hjk}9k=1 of a given LR patch indicates high am-
biguity in prediction and results in artifacts like hallucina-
tions and blurring. Our hybrid approach has a consistently
low uncertainty suggesting that computed nearest neighbors
have low entropy. These experiments clearly establish the
efficacy of hybrid imaging over traditional light field super-
resolution.

4. Experiments
Experimental Prototype: We decode the Lytro cam-

era’s raw sensor output using the toolbox provided by
Dansereau et al. [13]. This produces a light-field of spa-
tial resolution 380 × 380 pixels and an angular resolution
9× 9 views.

For a high-resolution DSLR, we use the 18 MP Canon
T3i DSLR with a Canon EF-S 18 − 55mm f/3.5 − 5.6 IS
II DSLR Lens. It has a spatial resolution of 5184 × 3456
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Figure 3: Prediction error and prediction uncertainty using a ground truth LF: (Left) We first compare the prediction error of our hybrid
imaging approach with respect to extrinsic image statistics [16]. Our approach has lower prediction error than the other techniques. This
experiment shows that our approach has lower prediction error even when the reference image is separated by a wide baseline. (Right) We
show the prediction uncertainty when finding the 9 nearest neighbors in the low-resolution dictionary. Our approach consistently has less
uncertainty than using a database of images. These experiments clearly establish the superiority of hybrid imaging over using a database
of images. (Pixel intensities vary between 0 and 255)
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Figure 4: 9× LF super-resolution of a real scene: The scene is captured using a Lytro camera with a spatial resolution of 380 × 380 for
each view. We show the central view of the 9× super-resolved LF, reconstructed using bicubic interpolation, Mitra et al. [27], Cho et al.
[11], and our algorithm. As shown in the insets, our algorithm is better able to retain the highly textured regions of the scene.

pixels. The lens is positioned such that the FOV of the
Lytro camera occupies the maximum part of the Canon
FOV. The overlapping FOVs results in a 3420× 3420 pixel
region of interest on the Canon image is; 9 times larger than
the spatial resolution of LF produced by the Lytro camera.
The product of our algorithm will be a 9× spatially super-
resolved LF.

Algorithmic Details: We consider low resolution

patches of size 8 × 8 and high resolution patches of size
72× 72. To reduce the reconstruction time, we learn a tree
structure using the FLANN library [28] on the dictionary
Df instead of using it dictionary directly. The value of σ2

in Equation 1 was chosen to be 40. For the rest of the details
of reconstruction, refer Section 3.

Shallow DOF: In order to quantitatively analyze the
shallow depth of field produced by our hybrid system, we
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Figure 5: 9× LF super-resolution of a complex scene: We show the central view of the 9× super-resolved LF, of another scene, recon-
structed using bicubic interpolation, Mitra et al. [27], Cho et al. [11] and our algorithm. This scene features complex elements such as
colored liquids and a reflective ball. Our algorithm is able to accommodate these materials and provides a better reconstruction than the
other methods.

(a) The red box and green box correspond to EPI of lines shown in our
reconstruction (right image) in Figure 4

(b) The violet box and yellow box correspond to EPI plots of lines shown
in our reconstruction (right image) in Figure 5

Figure 6: Epipolar constraints: In this figure, we show the EPIs
from our reconstructed LF. We don’t explicitly enforce epipolar
constraints in our algorithm, but from the above Figure it can be
seen that the depth dependent slope of textured surfaces are gener-
ally preserved in our reconstruction.

render (using Blender) a scene containing a slanted plane
and a ruler. By performing super-resolution and refocusing,
we clearly see that the hybrid imaging approach produces
about 9× shallower DOF than traditional LF refocusing di-
rectly from the Lytro data (see Figure 7).

High resolution LF and Refocusing Comparisons: We
compare our algorithm with the super-resolution techniques
of Mitra et al. [27] and Cho et al. [11] as well as using
bicubic interpolation. Mitra et al. [27] present a method to
super-resolve LFs using a GMM-based approach. Cho et
al. [11] present an algorithm that is tailored to decode a
higher spatial resolution LF from the Lytro camera and then

(a) Refocusing using disparity obtained from low resolution LF

(b) Refocusing using disparity obtained from 9× super-resolved LF

Figure 7: Shallow depth of field: We simulate a low-resolution LF
camera with focal length of 40mm, focused at 200mm and having
an aperture of f/8 using the Blender software. A high-resolution
image of 9 times the spatial resolution of the LF is also generated.
A high-resolution LF is reconstructed using our algorithm. We
synthetically refocus the high-resolution LF to represent a cam-
era with an aperture corresponding to f/0.8. (a) Refocusing done
using disparity obtained from low-resolution LF is shown. The re-
gion between the red dashed-lines are in-focus and the resulting
DOF is 5mm. Also note that the blurring varies slowly outside
of the in-focus region. (b) Refocusing done using disparity ob-
tained from the super-resolved LF is shown. The resulting DOF
is 0.55mm, nine times smaller than (a). This illustrates that our
hybrid system can obtain a DOF that is 9 times narrower than the
DOF of the low-resolution LF.

uses dictionary-based method [41] to further super-resolve
the LF.

Figure 4 shows the central view of the 9× super-resolved
LF using the bicubic, GMM [27], Cho et al. [11] and our al-
gorithm. Clearly, our algorithm recovers the highly textured



regions of the LF better than the other algorithms. Figure 5
shows the reconstructed LF for a more complex scene with
translucent color liquids and a shiny ball. Again, our algo-
rithm produces better reconstruction. We next show refo-
cusing results. Figure 8 and 9 show refocused images from
the first and second scenes respectively. From the inserts, it
is clear that our refocusing results are superior to the current
state-of-art algorithms.

5. Discussions and Conclusions
Epipolar Constraints: In our approach, we do not ex-

plicitly constrain the super-resolution to follow epipolar ge-
ometry. But, as shown in Figure 6, our reconstruction ad-
heres to epipolar constraints. In the future, we would like to
incorporate these constraints in the reconstruction.

All in focus DSLR: In our hybrid imaging system, the
HR camera is set to a small aperture in order to capture an
all in focus image. This is required to reconstruct an all in
focus HR LF. For low light conditions, as well as for cap-
turing dynamic objects with short exposure, the HR camera
will produce a noisy high resolution image. However, our
algorithm is able to tolerate moderate levels of noise due to
the weighted averaging of the matched patches, producing
a clean reconstruction of the high resolution LF.

Computational Efficiency: Our algorithm was imple-
mented in MATLAB and takes 1 hour on a Intel i7 third-
generation processor with 32GB of RAM to compute a
super-resolved LF of resolution 11 MP given an input LF
with spatial resolution of 0.1 MP. A parallelized implemen-
tation of our algorithm is possible since the search for each
LR patch is independent. The reconstruction of the super-
resolved light field can be significantly sped up by incorpo-
rating the epipolar constraint and reducing the search space
of all the patches lying on the same epipolar line in the Lytro
camera’s light field.

Conclusions: Current LF cameras such as the Lytro
camera have low spatial resolution. To improve the spa-
tial resolution of the LF, we introduced a hybrid imaging
system consisting of the low-resolution LF camera and a
high-resolution DSLR. Using a patch-based aglorithm, we
are able to marry the advantages of both cameras to produce
a high-resolution LF. Our algorithm does not require the LF
camera and the DSLR to be co-located or any calibration
information relating the cameras. We show that using our
hybrid system, a 0.1 MP LF caputred using a Lytro camera
can be super-resolved to an 11 MP LF while retaining high
fidelity in textured regions. Furthermore, the system en-
ables users to refocus images with DOFs that are nine times
narrower than the DOF of the Lytro camera.
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Figure 8: Refocusing results for real scene: On the top, we show the LF super-resolved using our method refocused at different depths.
Below that, we show zoomed insets from refocused results produced by bicubic interpolation, Mitra et al. [27], Cho et al. [11] and our
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Figure 9: Refocusing results for complex scene: On the top, we show the LF super-resolved using our method refocused at different depths.
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